297 research outputs found

    An inhibitory pull-push circuit in frontal cortex.

    Get PDF
    Push-pull is a canonical computation of excitatory cortical circuits. By contrast, we identify a pull-push inhibitory circuit in frontal cortex that originates in vasoactive intestinal polypeptide (VIP)-expressing interneurons. During arousal, VIP cells rapidly and directly inhibit pyramidal neurons; VIP cells also indirectly excite these pyramidal neurons via parallel disinhibition. Thus, arousal exerts a feedback pull-push influence on excitatory neurons-an inversion of the canonical push-pull of feedforward input

    Rabies screen reveals GPe control of cocaine-triggered plasticity.

    Get PDF
    Identification of neural circuit changes that contribute to behavioural plasticity has routinely been conducted on candidate circuits that were preselected on the basis of previous results. Here we present an unbiased method for identifying experience-triggered circuit-level changes in neuronal ensembles in mice. Using rabies virus monosynaptic tracing, we mapped cocaine-induced global changes in inputs onto neurons in the ventral tegmental area. Cocaine increased rabies-labelled inputs from the globus pallidus externus (GPe), a basal ganglia nucleus not previously known to participate in behavioural plasticity triggered by drugs of abuse. We demonstrated that cocaine increased GPe neuron activity, which accounted for the increase in GPe labelling. Inhibition of GPe activity revealed that it contributes to two forms of cocaine-triggered behavioural plasticity, at least in part by disinhibiting dopamine neurons in the ventral tegmental area. These results suggest that rabies-based unbiased screening of changes in input populations can identify previously unappreciated circuit elements that critically support behavioural adaptations

    Neurogenesis Drives Stimulus Decorrelation in a Model of the Olfactory Bulb

    Get PDF
    The reshaping and decorrelation of similar activity patterns by neuronal networks can enhance their discriminability, storage, and retrieval. How can such networks learn to decorrelate new complex patterns, as they arise in the olfactory system? Using a computational network model for the dominant neural populations of the olfactory bulb we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb -- the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells -- are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The decorrelation is quite robust with respect to various types of perturbations of the reciprocity. The model parsimoniously captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures

    Visualization of mouse barrel cortex using ex-vivo track density imaging

    Get PDF
    We describe the visualization of the barrel cortex of the primary somatosensory area (S1) of ex vivo adult mouse brain with short-tracks track density imaging (stTDI). stTDI produced much higher definition of barrel structures than conventional fractional anisotropy (FA), directionally-encoded color FA maps, spin-echo and T2-weighted imaging and gradient echo Ti/T2*-weighted imaging. 3D high angular resolution diffusion imaging (HARDI) data were acquired at 48 micron isotropic resolution for a (3 mm)3 block of cortex containing the barrel field and reconstructed using stTDI at 10 micron isotropic resolution. HARDI data were also acquired at 100 micron isotropic resolution to image the whole brain and reconstructed using stTDI at 20 micron isotropic resolution. The 10 micron resolution stTDI maps showed exceptionally clear delineation of barrel structures. Individual barrels could also be distinguished in the 20 micron stTDI maps but the septa separating the individual barrels appeared thicker compared to the 10 micron maps, indicating that the ability of stTDI to produce high quality structural delineation is dependent upon acquisition resolution. Close homology was observed between the barrel structure delineated using stTDI and reconstructed histological data from the same samples. stTDI also detects barrel deletions in the posterior medial barrel sub-field in mice with infraorbital nerve cuts. The results demonstrate that stTDI is a novel imaging technique that enables three-dimensional characterization of complex structures such as the barrels in S1 and provides an important complementary non-invasive imaging tool for studying synaptic connectivity, development and plasticity of the sensory system. (C) 2013 Elsevier Inc. All rights reserved

    Mechanisms underlying a thalamocortical transformation during active tactile sensation

    Get PDF
    During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit

    Olfactory Enrichment Influences Adult Neurogenesis Modulating GAD67 and Plasticity-Related Molecules Expression in Newborn Cells of the Olfactory Bulb

    Get PDF
    The olfactory bulb (OB) is a highly plastic region of the adult mammalian brain characterized by continuous integration of inhibitory interneurons of the granule (GC) and periglomerular cell (PGC) types. Adult-generated OB interneurons are selected to survive in an experience-dependent way but the mechanisms that mediate the effects of experience on OB neurogenesis are unknown. Here we focus on the new-generated PGC population which is composed by multiple subtypes. Using paradigms of olfactory enrichment and/or deprivation combined to BrdU injections and quantitative confocal immunohistochemical analyses, we studied the effects of olfactory experience on adult-generated PGCs at different survival time and compared PGC to GC modulation. We show that olfactory enrichment similarly influences PGCs and GCs, increasing survival of newborn cells and transiently modulating GAD67 and plasticity-related molecules expression. However, PGC maturation appears to be delayed compared to GCs, reflecting a different temporal dynamic of adult generated olfactory interneuron integration. Moreover, olfactory enrichment or deprivation do not selectively modulate the survival of specific PGC phenotypes, supporting the idea that the integration rate of distinct PGC subtypes is independent from olfactory experience

    CRMP5 Regulates Generation and Survival of Newborn Neurons in Olfactory and Hippocampal Neurogenic Areas of the Adult Mouse Brain

    Get PDF
    The Collapsin Response Mediator Proteins (CRMPs) are highly expressed in the developing brain, and in adult brain areas that retain neurogenesis, ie: the olfactory bulb (OB) and the dentate gyrus (DG). During brain development, CRMPs are essentially involved in signaling of axon guidance and neurite outgrowth, but their functions in the adult brain remain largely unknown. CRMP5 has been initially identified as the target of auto-antibodies involved in paraneoplasic neurological diseases and further implicated in a neurite outgrowth inhibition mediated by tubulin binding. Interestingly, CRMP5 is also highly expressed in adult brain neurogenic areas where its functions have not yet been elucidated. Here we observed in both neurogenic areas of the adult mouse brain that CRMP5 was present in proliferating and post-mitotic neuroblasts, while they migrate and differentiate into mature neurons. In CRMP5−/− mice, the lack of CRMP5 resulted in a significant increase of proliferation and neurogenesis, but also in an excess of apoptotic death of granule cells in the OB and DG. These findings provide the first evidence that CRMP5 is involved in the generation and survival of newly generated neurons in areas of the adult brain with a high level of activity-dependent neuronal plasticity

    Two-way communication with neural networks in vivo using focused light

    Get PDF
    Neuronal networks process information in a distributed, spatially heterogeneous manner that transcends the layout of electrodes. In contrast, directed and steerable light offers the potential to engage specific cells on demand. We present a unified framework for adapting microscopes to use light for simultaneous in vivo stimulation and recording of cells at fine spatiotemporal resolutions. We use straightforward optics to lock onto networks in vivo, to steer light to activate circuit elements and to simultaneously record from other cells. We then actualize this 'free' augmentation on both an 'open' two-photon microscope and a leading commercial one. By following this protocol, setup of the system takes a few days, and the result is a noninvasive interface to brain dynamics based on directed light, at a network resolution that was not previously possible and which will further improve with the rapid advance in development of optical reporters and effectors. This protocol is for physiologists who are competent with computers and wish to extend hardware and software to interface more fluidly with neuronal networks.National Institutes of Health (U.S.) (Postdoctoral Fellowship)Simons Foundation (Postdoctoral Fellowship)National Institutes of Health (U.S.) (Predoctoral Fellowship)National Institutes of Health (U.S.)Simons Foundatio

    Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons

    Get PDF
    Feature-selective firing allows networks to produce representations of the external and internal environments. Despite its importance, the mechanisms generating neuronal feature selectivity are incompletely understood. In many cortical microcircuits the integration of two functionally distinct inputs occurs nonlinearly through generation of active dendritic signals that drive burst firing and robust plasticity. To examine the role of this processing in feature selectivity, we recorded CA1 pyramidal neuron membrane potential and local field potential in mice running on a linear treadmill. We found that dendritic plateau potentials were produced by an interaction between properly timed input from entorhinal cortex and hippocampal CA3. These conjunctive signals positively modulated the firing of previously established place fields and rapidly induced new place field formation to produce feature selectivity in CA1 that is a function of both entorhinal cortex and CA3 input. Such selectivity could allow mixed network level representations that support context-dependent spatial maps.Howard Hughes Medical InstituteRikagaku Kenkyūjo (Japan
    • …
    corecore